TPC1 2025/2026 — CORRECTION DU DM PHYSIQUE N°2

I) Circuit RL & deux mailles

Dans le circuit représenté ci-dessous le générateur de tension a une force électromotrice constante £ =3 Vet R =1 kQ. A
Iinstant ¢ = 0, on ferme linterrupteur K qui était ouvert depuis trés longtemps.
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Correction

Pour t = 07, toutes les intensités sont nulles. Par continuité de iz, on en déduit que i2(0") = 0. La seule possibilité est la
courbe (c).

Remarque : une loi des nceuds donne
i=ii+iz = i(07)=1i1(07)
Ce qui est bien observé sur le graphe.

Lorsque ¢ — oo, la bobine devient équivalente & un fil. La résistance R/2 est donne court-circuitée, aucun courant ne la
traverse : i1(0c0) = 0. Il s’agit de la courbe (a).

Remarque : de nouveau, une loi des noeuds donne
1=11+1 = Z(OO) = ZQ(OO)

Ce qui est bien observé sur le graphe.
Et finalement ¢ correspond a la (b).

Remarque : on observe également graphiquement que ¢ = i1 + is.

2) Déterminer 'expression de ur(t = 07).

Correction

Puisque i2(0") = 0 (par continuité), alors i(0") = i1(0"). Les deux résistances sont parcourues par la méme intensité et
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on peut donc appliquer le pont diviseur de tension de R/2.

R/2 E
= T .
ur (0 )_R+R/2E 3

3) Déterminer l'expression de uq, la valeur de ur(t — 00).

Correction

La bobine devient équivalente & un fil, donc

4) Montrer que I’équation différentielle vérifiée par ur(t) est :

duL R
A Rl t) =
at + 3L ur(t) =0
Correction
On part de la loi des mailles :
E=Ri+uy
E:R(Zl—FZQ)—{-’U,L (—Zzll+22
d’il dig duL d
0O=R|{—+ — — — —
( a T ) o at
2 duL uy, duL Ril dig
= _ — [— _ - — t — i
0 R(R dt+L>+dt CuE s dt
duL uy, 3L
P = — — —
dt + T 0 T R
5) En déduire l'expression de up(t) et tracer son allure.
Correction
Forme générale :
up(t) = A e V7
Avec la condition initiale :
+ E E —t/T
UL(O)_g—A = U/L(t):ge

Graphe :

6) On mesure 7 = 30 ps. En déduire la valeur de L.

N. Perrissin | 2025/2026 | TPC1, Mermoz Page n°2/11




Correction

Ona:

7':% = L:%:lOmH

IT) Moteur et récepteur de Lenoir

On considére la transformation cyclique de n moles de gaz parfait (de coefficient de Laplace «), suffisamment lentement
pour que l’équilibre mécanique soit constamment réalisé avec le milieu extérieur. Lors d’un cycle le gaz subit, dans cet
ordre, les trois transformations suivantes : [AB] une transformation isobare, [BC| une transformation isotherme et [CA| une
transformation isochore.

On note (Py, Vo, Tp) les parameétres d’états du point A et T; la température lors de la transformation isotherme.

7) Déterminer les paramétres d’états (P, V,T) des points B et C en fonction de Py, Vy, Ty et T7.

Correction

[AB] est une transformation isobare de la température Ty vers la température T3, donc :

TLRTl Tl
Py T

Pg =P, Tp =T Vg =

[CA] est une transformation isochore de la température Ty vers la température T, donc :

TLRTl T1
Vo T

Ve=W Tc=1T1 Pc=

8) Déterminer le travail des forces de pression W et la chaleur @) échangée avec le milieu extérieur pour chaque étapes, en
fonction de n, R, v, Ty et T1.

Correction
Pour I’étape [AB] :
Ve
WAB:_/ PO dV:_PO(VB_VA): _nR<T1_T0>

Va
De plus,
nR
AUag = Wap + Qas = po— (T —Tp)
On en déduit :
nRk nRk
QaB = o—| (Th = To) + nR(Ty = Ty) = 3_1 (Th = To)

Pour I’étape [BC] :
AUpc = C,AT = 0 = Wge + QBc

Donc :

Ve Ve qv T,
Wee = —Qpc = —/ PdV =-nRT, [ — =|-nRT ln(0>
VB VB V Tl

Pour I’étape [CA] :

Ve
Wea = — Pdv =0
Va

On en déduit :

nRk
v—1

AUca =|Qca = (To — Th)

9) Représenter le cycle dans un diagramme de Clapeyron pour Ty > Tp et pour 77 < Tg. Ces cycles décrivent-ils un moteur
ou un récepteur ?
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Correction

Selon la valeur de 77, nous pouvons avoir les deux cycles ci-dessous.

P(V)

\ C \
T, > T,
A B
2 — < > LR
0 B
T, <T,
Vo

On voit graphiquement que les deux cycles sont parcourus dans le sens trigonométrique (cycle récepteur). Cela se vérifie
également en regardant le signe du travail du cycle :

chcle = Wap + Wgc + Weca

T,
—nR(Ty — Ty) — nRT} 1n<°)

Ty
T
nRT} (1: —1- ln(x)) avec : T = —
T
> 0

IIT) Tunnel terrestre

On admet que pour tout point M de masse m situé a U'intérieur de la Terre (de rayon R) & la distance r du centre C' de la
Terre, 'attraction terrestre est une force agissant sur ce point, dirigée vers le centre de la terre et de valeur (en coordonnées
sphériques) :
mgr
P,
On considére un tunnel rectiligne AB, d’axe (Hz) ne passant pas par C et traversant la Terre. On note d la distance CH du
sans vitesse initiale.

tunnel au centre de la Terre. Un point matériel M de masse m glisse sans frottement dans le tunnel. Ce véhicule part de A
On prendra le point H comme origine de 'axe (Hz).
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Données : R=6,4x10°m,d=5x 10 m et g = 9,81 m-s~2.

10) Déterminer I'énergie potentielle £,(r) (en fonction de la variable r) puis £,(x) (en fonction de la variable z) de M, en
choisissant la constante d’intégration de sorte que &,(z = 0) = 0.

Correction

On rappelle le lien entre force et énergie potentielle :

_d&, _mg o
?— Wﬁr = SP—ZRT + cte

Or, d’aprés le théoréme de Pythagore,
r? = 2% 4+ d?

Enfin, on choisit la constante pour que £,(0) = 0. Ainsi :

Ep(x) = 9 z?

11) Tracer &y(x).

Correction

Il s’agit d’une parabole.

12) Quelle est la vitesse maximale atteinte par M au cours du mouvement ?

Correction
La vitesse est maximale lorsque 1’énergie potentielle est minimale, donc au point H d’abscisse z = 0.

D’aprés le théoréme de Pythagore dans CHB,
e
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D’aprés la conservation de ’énergie mécanique entre A et H :

1
Em:cte:@xi=0+fmv2

2 _ 2) — gl
5R 5MVmaa (R?2—d?)=5km-s

= Umaz =

=]l

13) Déterminer 1'équation différentielle vérifiée par x(¢). La résoudre.

Correction

On applique le théoréme de la puissance mécanique :
d&
Em_0 = mii+ Zai =0

On en déduit :

=]

Frwirz=0 avec: wy=

IV) Un jeu d’enfant

On considére le jeu d’enfant suivant.

E o
D
r. O yn.
F
/ R
e
8
M
I C é
B M (k,R) A
Y¥Xx

Une bille (point M de masse m supposée ponctuelle) circule sur une piste BCEF. Cette piste est constituée : d’une partie
rectiligne BC de longueur R, d’un demi-cercle CE de rayon R et de centre O, et d’une seconde partie rectiligne commencant
au point F (situé au dessus du point B, a gauche du point O).

Un ressort, de constante de raideur k et de longueur a vide R, relié d’un coté a un point fixe A (distance CA = R) et de
l’autre a une plaque mobile.

Un enfant tire la plaque jusqu’au point B et place la bille M contre la plaque. Il lache la plaque sans vitesse initiale, le ressort
se contracte alors, propulsant la bille. La contact entre la bille et la plaque est rompu au point C : la bille s’engage dans la
piste circulaire et le ressort est arrété par une cale non représentée sur le schéma.

On néglige dans ’exercice toute source de dissipation d’énergie. Tous les résultats sont & exprimer en fonction de k, R, m et
g.

14) Déterminer l'expression de la vitesse vc de la bille au point C.

Correction

On utilise la conservation de ’énergie mécanique entre B et C.

1 N
—mu vg =\ —
2C © m

1
ik(QR—R)Q—i-O:O—f—

On étudie le mouvement dans la piste circulaire.

15) Déterminer, a ’aide de la conservation de 1’énergie mécanique de la bille, une relation reliant w (vitesse angulaire) et 6.
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Correction

Vitesse : o/ = Rwﬁg.

Energie potentielle de pesanteur : £, = —mgz = —mgR cos().

On utilise la conservation de 1’énergie mécanique entre C et M quelconque.

1 1
Emv% —mgR = imR2w2 — mgR cos(0)

Ainsi,

mRw? = kR + 2mg (cos(@) — 1)

16) En déduire expression de la réaction normale de la piste en fonction de 6.

Correction
On a:
o Poids : P = mg iy = mg (COS(G) U, — sin(6) 79)

o Réaction normale du support : ﬁ =N,
o Accélération : @ = Rwﬁr - Rw279

On applique le PFD que l'on projette sur U,

—mRw? = —N + mg cos(0)

Avec la question précédente, on en déduit :

N =EkR+mg (3 cos(f) — 2)

17) Déterminer 'angle 6 du point D, point ot la bille quitte le guide. En déduire une condition portant sur k pour que le
point matériel parvienne au sommet E de la piste. On note kg le cas limite.

Correction

Au point D, la réaction normale du support s’annule.

0=kR+ mg(3 cos(fp) — 2) = |cos(fp) =

Pour que la point D coincide avec le point E, il faut que p = .

2 kR omg
—1l==—=—— = |ky=—
3 3mg 0 R

Pour atteindre le point E, il faut donc que .

On suppose la suite que k = kg. On étudie le mouvement aprés la point E.

18) Déterminer 1'équation du mouvement lorsque de la chute libre.

Correction

La vitesse au point E vaut, dans ce cas limite :

1 1
imvé,o —mgR = §m012~:,0 +mgR

1 1
= §k0R2 —mgR = §mvé’0 +mgR

omgR 1
IMIT  mgR = Smug o+ mgR

=
2

= |VE,0 = \/gR
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La bille n’est soumise qu’a sont poids durant la chute libre. On pose ¢ = 0 le temps ot M = E. Les conditions initiales de
la chute sont : .
OM = R4, =R,
v = \/gRﬁg = —\/gRﬁy
Le PFD donne :
2
.. é . i 2
g =0 y = —VgR y = —/gRt

19) Le jouet peut-il tomber entre F et O? On suppose de plus qu’il conserve aprés latterrissage sur le plan horizontal la
composante horizontale du vecteur vitesse qu’il avait a 'instant de ’atterrissage. Déterminer I’expression de sa vitesse sur le
plan horizontal en fonction, entre autres, de vy.

Correction

Lorsque x =0 :

Dans le cas limite, la bille tombe au-dela du point F. Donc méme si k > kg, la bille tombera toujours sur la piste.

Puisque la bille conserve sa vitesse horizontale, | v = —1/gR | aprés atterrissage.

V') Masse ressort avec frottements solides

On considére une masse m, supposée ponctuelle au point M, située a 'extrémité d’un ressort de raideur k et de longueur &
vide {y. L’autre extrémité est fixe. On note O l'origine du repére, situé a une distance ¢y de 'extrémité fixe.

Le point M est soumis, en plus de la force de rappel élastique, & une force de frottement solide de coefficient f; = fs = f.

m
On introduit le paramétre x, = % On suppose que M est abandonné sans vitesse initiale a 'abscisse z( vérifiant z¢ > z..

S s

>
& >
' '

b |

a L
€ >

AR -

0 x(t)

20) Montrer que si ¢ € [—x,, z] et £ = 0, alors M reste immobile. Pour démontrer ce résultat, on distinguera les cas = > 0
et z <0.

Correction

On étudie le systéme M assimilé a un point matériel dans le référentiel du laboratoire supposé galiléen. On suppose que
x > 0. Dans ce référentiel, le systéme est soumis & :

o Son poids : ﬁ = —mgﬁy
o La force de rappel élastique : ? =—k(£—4{) Uy = —ka i,
La réaction normale : ﬁ =N 7y

@]

e}

La réaction tangentielle (hypothése de non glissement) : T = T, avec T < fN

On suppose que M reste immobile. Le PFD donne :

0=—-kx+T
0=-mg+ N
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Cette hypothése de non glissement reste vraie tant que :

T<fN = kr<mg =

Le méme raisonnement en supposant que z < 0 donne :

0=—kax—T

S ks =

0=-mg+ N

On en déduit que si M est immobile dans la plage [—z., z.], alors il restera immobile.

Ainsi, si au cours du mouvement ces conditions sont remplies, alors le mouvement s’arréte. L’intervalle [—z., z.] s’appelle la
plage de stabilité de 1'oscillateur.

21) Etablir I'équation différentielle vérifice par M lors de la premiére phase du mouvement, celle ou M glisse vers les =
décroissants.

Correction

On étudie le systéme M assimilé & un point matériel dans le référentiel du laboratoire supposé galiléen. Dans ce référentiel,
le systéme est soumis & :

o Son poids : ? = —mgﬁy
o La force de rappel élastique : ? =—k(l—{p) Uy = —kat,
o La réaction normale : ﬁ =N 7y

o La réaction tangentielle (s’oppose au glissement qui a lieu selon —71) : 7 =T, = fN Uy

Le PFD donne :
mi=—kx+ fN

0=-mg+ N

[k
F+wdat)=fg avec: wy= -

22) Déterminer la solution compléte de cette équation différentielle.

= mi=—kx+ fmg

On en déduit :

Correction

Solution :

t) = A cos(wot) + B si t)+ T
x(t) (wot) in(wet) + x

SEH SP

Avec les conditions initiales :

z(0N)=zg=A+2. = ‘A:$0—l‘e>0

#0T)=0=wyB =

On en déduit :

| 2(t) = (20 — xc) cos(wot) + 7.

23) Déterminer I'expression de z1, la position ot la vitesse s’annule.

Correction

La vitesse s’annule lorsque x est minimal, c’est-a-dire lorsque le coinus vaut —1.

T
T = m(70> = —x9 + 2z,

On suppose que x; n’est pas dans la plage de stabilité.

24) Etablir 'équation différentielle vérifise par M lors de la deuxiéme phase du mouvement, celle ott M glisse vers les =
croissants.
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Correction

On étudie le systéeme M assimilé & un point matériel dans le référentiel du laboratoire supposé galiléen. Dans ce référentiel,
le systéme est soumis & :

o Son poids : P= —mg i,

o La force de rappel élastique : f’) =—k(l—{) Uy = —ka

o La réaction normale : ﬁ =N 7y

o La réaction tangentielle (s’oppose au glissement qui a lieu selon 7735) : ? = TU, =— N Uy

Le PFD donne :
mi = —kx — fN

0=-mg+ N

k
i+wg z(t)=—fg avec: wo={/—
m

25) Déterminer la solution compléte de cette équation différentielle puis déterminer Iexpression de x5, la position ou la
vitesse s’annule.

= mI=—kx— fmg

On en déduit :

Correction
On redéfinit 'origine des temps. On appelle t = 0 le temps ot = x7.

Solution :
xt—Acoswt—i—Bsinwt —Te
() (O) (0)

SEH SP

Avec les conditions initiales :

2(0N)=21=A-2, = ‘A:x1+xe:f:€0+3xe

#07)=0=wB =

On en déduit :

’x(t) = (—zg + 3x.) cos(wot) — @,

La vitesse s’annule lorsque x est maximal, c’est-a-dire lorsque le coinus vaut —1.

T
Ty = x(20> = x9 — 4z,

On peut généraliser aisément les résultats précédents et montrer que :

To — 2nT, si n entier naturel pair "
Ty = & la, =(-1) (a:o - ane)
—xo + 2nz. si n entier naturel impair

26) Tracer lallure de z(t) et commenter les différences entre une force de frottement fluide (dans le cas d’un régime pseudo-
périodique) et de frottement solide.

Correction

N. Perrissin | 2025/2026 | TPC1, Mermoz Page n°10/11



-~ - _Point d’arrét

=

affine

Alors que I'enveloppe du mouvement est exponentielle dans le cas du frottement fluide, on constate ici que ’enveloppe est

To To
2 x5

Plage de stabilité
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