
I CIRCUIT RL À DEUX MAILLES

TPC1 2025/2026 – Correction du DM Physique n°2

I ) Circuit RL à deux mailles

Dans le circuit représenté ci-dessous le générateur de tension a une force électromotrice constante E = 3 V et R = 1 kΩ. À
l’instant t = 0, on ferme l’interrupteur K qui était ouvert depuis très longtemps.

1) On donne l’allure de i(t), i1(t) et i2(t). Identifier les courbes correspondantes.

Correction

Pour t = 0−, toutes les intensités sont nulles. Par continuité de i2, on en déduit que i2(0
+) = 0. La seule possibilité est la

courbe (c).

Remarque : une loi des nœuds donne
i = i1 + i2 ⇒ i

(
0+

)
= i1

(
0+

)
Ce qui est bien observé sur le graphe.

Lorsque t → ∞, la bobine devient équivalente à un fil. La résistance R/2 est donne court-circuitée, aucun courant ne la
traverse : i1(∞) = 0. Il s’agit de la courbe (a).

Remarque : de nouveau, une loi des nœuds donne

i = i1 + i2 ⇒ i(∞) = i2(∞)

Ce qui est bien observé sur le graphe.

Et finalement i correspond à la (b).

Remarque : on observe également graphiquement que i = i1 + i2.

2) Déterminer l’expression de uL(t = 0+).

Correction

Puisque i2(0
+) = 0 (par continuité), alors i(0+) = i1(0

+). Les deux résistances sont parcourues par la même intensité et
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I CIRCUIT RL À DEUX MAILLES

on peut donc appliquer le pont diviseur de tension de R/2.

uL

(
0+

)
=

R/2

R+R/2
E =

E

3

3) Déterminer l’expression de u∞, la valeur de uL(t→∞).

Correction

La bobine devient équivalente à un fil, donc u∞ = 0

4) Montrer que l’équation différentielle vérifiée par uL(t) est :

duL

dt
+

R

3L
uL(t) = 0

Correction

On part de la loi des mailles :

E = Ri+ uL

E = R (i1 + i2) + uL ← i = i1 + i2

0 = R

(
di1
dt

+
di2
dt

)
+

duL

dt
← d

dt

0 = R

(
2

R

duL

dt
+

uL

L

)
+

duL

dt
← uL =

Ri1
2

et uL = L
di2
dt

duL

dt
+

uL

τ
= 0 ← τ =

3L

R

5) En déduire l’expression de uL(t) et tracer son allure.

Correction

Forme générale :
uL(t) = A e−t/τ

Avec la condition initiale :

uL

(
0+

)
=

E

3
= A ⇒ uL(t) =

E

3
e−t/τ

Graphe :

6) On mesure τ = 30 µs. En déduire la valeur de L.
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II MOTEUR ET RÉCEPTEUR DE LENOIR

Correction

On a :

τ =
3L

R
⇒ L =

Rτ

3
= 10 mH

II ) Moteur et récepteur de Lenoir

On considère la transformation cyclique de n moles de gaz parfait (de coefficient de Laplace γ), suffisamment lentement
pour que l’équilibre mécanique soit constamment réalisé avec le milieu extérieur. Lors d’un cycle le gaz subit, dans cet
ordre, les trois transformations suivantes : [AB] une transformation isobare, [BC] une transformation isotherme et [CA] une
transformation isochore.

On note (P0, V0, T0) les paramètres d’états du point A et T1 la température lors de la transformation isotherme.

7) Déterminer les paramètres d’états (P, V, T ) des points B et C en fonction de P0, V0, T0 et T1.

Correction

[AB] est une transformation isobare de la température T0 vers la température T1, donc :

PB = P0 TB = T1 VB =
nRT1

P0
=

T1

T0
V0

[CA] est une transformation isochore de la température T1 vers la température T0, donc :

VC = V0 TC = T1 PC =
nRT1

V0
=

T1

T0
P0

8) Déterminer le travail des forces de pression W et la chaleur Q échangée avec le milieu extérieur pour chaque étapes, en
fonction de n, R, γ, T0 et T1.

Correction

Pour l’étape [AB] :

WAB = −
� VB

VA

P0 dV = −P0 (VB − VA) = −nR (T1 − T0)

De plus,

∆UAB = WAB +QAB =
nR

γ − 1
(T1 − T0)

On en déduit :

QAB =
nR

γ − 1
(T1 − T0) + nR (T1 − T0) =

γnR

γ − 1
(T1 − T0)

Pour l’étape [BC] :
∆UBC = Cv∆T = 0 = WBC +QBC

Donc :

WBC = −QBC = −
� VC

VB

P dV = −nRT1

� VC

VB

dV

V
= −nRT1 ln

(
T0

T1

)
Pour l’étape [CA] :

WCA = −
� VC

VA

P dV = 0

On en déduit :

∆UCA = QCA =
nR

γ − 1
(T0 − T1)

9) Représenter le cycle dans un diagramme de Clapeyron pour T1 > T0 et pour T1 < T0. Ces cycles décrivent-ils un moteur
ou un récepteur ?
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III TUNNEL TERRESTRE

Correction

Selon la valeur de T1, nous pouvons avoir les deux cycles ci-dessous.

On voit graphiquement que les deux cycles sont parcourus dans le sens trigonométrique (cycle récepteur). Cela se vérifie
également en regardant le signe du travail du cycle :

Wcycle = WAB +WBC +WCA

= −nR (T1 − T0)− nRT1 ln
(
T0

T1

)
= nRT1

(
x− 1− ln(x)

)
avec : x =

T0

T1

> 0

III ) Tunnel terrestre

On admet que pour tout point M de masse m situé à l’intérieur de la Terre (de rayon R) à la distance r du centre C de la
Terre, l’attraction terrestre est une force agissant sur ce point, dirigée vers le centre de la terre et de valeur (en coordonnées
sphériques) :

−→
F = −mgr

R
−→ur

On considère un tunnel rectiligne AB, d’axe (Hx) ne passant pas par C et traversant la Terre. On note d la distance CH du
tunnel au centre de la Terre. Un point matériel M de masse m glisse sans frottement dans le tunnel. Ce véhicule part de A
sans vitesse initiale.

On prendra le point H comme origine de l’axe (Hx).
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III TUNNEL TERRESTRE

Données : R = 6,4× 106 m, d = 5× 106 m et g = 9,81 m · s−2.

10) Déterminer l’énergie potentielle Ep(r) (en fonction de la variable r) puis Ep(x) (en fonction de la variable x) de M, en
choisissant la constante d’intégration de sorte que Ep(x = 0) = 0.

Correction

On rappelle le lien entre force et énergie potentielle :

−→
F = −dEp

dr
−→ur ⇒ Ep =

mg

2R
r2 + cte

Or, d’après le théorème de Pythagore,
r2 = x2 + d2

Enfin, on choisit la constante pour que Ep(0) = 0. Ainsi :

Ep(x) =
mg

2R
x2

11) Tracer Ep(x).

Correction

Il s’agit d’une parabole.

12) Quelle est la vitesse maximale atteinte par M au cours du mouvement ?

Correction

La vitesse est maximale lorsque l’énergie potentielle est minimale, donc au point H d’abscisse x = 0.

D’après le théorème de Pythagore dans CHB,
R2 = x2

A + d2
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IV UN JEU D’ENFANT

D’après la conservation de l’énergie mécanique entre A et H :

Em = cte =
mg

2R
x2

A = 0 +
1

2
mv2max ⇒ vmax =

√
g

R
(R2 − d2) = 5 km · s−1

13) Déterminer l’équation différentielle vérifiée par x(t). La résoudre.

Correction

On applique le théorème de la puissance mécanique :

dEm
dt

= 0 ⇒ mẋẍ+
mg

R
xẋ = 0

On en déduit :

ẍ+ ω2
0 x = 0 avec : ω0 =

√
g

R

IV) Un jeu d’enfant

On considère le jeu d’enfant suivant.

Une bille (point M de masse m supposée ponctuelle) circule sur une piste BCEF. Cette piste est constituée : d’une partie
rectiligne BC de longueur R, d’un demi-cercle CE de rayon R et de centre O, et d’une seconde partie rectiligne commençant
au point F (situé au dessus du point B, à gauche du point O).

Un ressort, de constante de raideur k et de longueur à vide R, relié d’un côté à un point fixe A (distance CA = R) et de
l’autre à une plaque mobile.

Un enfant tire la plaque jusqu’au point B et place la bille M contre la plaque. Il lâche la plaque sans vitesse initiale, le ressort
se contracte alors, propulsant la bille. La contact entre la bille et la plaque est rompu au point C : la bille s’engage dans la
piste circulaire et le ressort est arrêté par une cale non représentée sur le schéma.

On néglige dans l’exercice toute source de dissipation d’énergie. Tous les résultats sont à exprimer en fonction de k, R, m et
g.

14) Déterminer l’expression de la vitesse vC de la bille au point C.

Correction

On utilise la conservation de l’énergie mécanique entre B et C.

1

2
k (2R−R)

2
+ 0 = 0 +

1

2
mv2C ⇒ vC =

√
kR2

m

On étudie le mouvement dans la piste circulaire.

15) Déterminer, à l’aide de la conservation de l’énergie mécanique de la bille, une relation reliant ω (vitesse angulaire) et θ.
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IV UN JEU D’ENFANT

Correction

Vitesse : −→v = Rω−→uθ.

Énergie potentielle de pesanteur : Ep = −mgx = −mgR cos(θ).

On utilise la conservation de l’énergie mécanique entre C et M quelconque.

1

2
mv2C −mgR =

1

2
mR2ω2 −mgR cos(θ)

Ainsi,

mRω2 = kR+ 2mg
(
cos(θ)− 1

)

16) En déduire l’expression de la réaction normale de la piste en fonction de θ.

Correction

On a :
◦ Poids :

−→
P = mg−→ux = mg

(
cos(θ)−→ur − sin(θ)−→uθ

)
◦ Réaction normale du support :

−→
N = −N−→ur

◦ Accélération : −→a = Rω̇−→ur −Rω2−→uθ

On applique le PFD que l’on projette sur −→ur.

−mRω2 = −N +mg cos(θ)

Avec la question précédente, on en déduit :

N = kR+mg
(
3 cos(θ)− 2

)

17) Déterminer l’angle θD du point D, point où la bille quitte le guide. En déduire une condition portant sur k pour que le
point matériel parvienne au sommet E de la piste. On note k0 le cas limite.

Correction

Au point D, la réaction normale du support s’annule.

0 = kR+mg
(
3 cos(θD)− 2

)
⇒ cos(θD) =

2

3
− kR

3mg

Pour que la point D coïncide avec le point E, il faut que θD = π.

−1 =
2

3
− k0R

3mg
⇒ k0 =

5mg

R

Pour atteindre le point E, il faut donc que k > k0 .

On suppose la suite que k = k0. On étudie le mouvement après la point E.

18) Déterminer l’équation du mouvement lorsque de la chute libre.

Correction

La vitesse au point E vaut, dans ce cas limite :

1

2
mv2C,0 −mgR =

1

2
mv2E,0 +mgR

⇒ 1

2
k0R

2 −mgR =
1

2
mv2E,0 +mgR

⇒ 5mgR

2
−mgR =

1

2
mv2E,0 +mgR

⇒ vE,0 =
√
gR
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V MASSE RESSORT AVEC FROTTEMENTS SOLIDES

La bille n’est soumise qu’à sont poids durant la chute libre. On pose t = 0 le temps où M = E. Les conditions initiales de
la chute sont : −−→

OM = R−→ur = −R−→ux

−→v =
√
gR−→uθ = −

√
gR−→uy

Le PFD donne :  ẍ = g

ÿ = 0
⇒

 ẋ = gt

ẏ = −
√
gR

⇒

 x =
gt2

2
−R

y = −
√
gR t

19) Le jouet peut-il tomber entre F et O ? On suppose de plus qu’il conserve après l’atterrissage sur le plan horizontal la
composante horizontale du vecteur vitesse qu’il avait à l’instant de l’atterrissage. Déterminer l’expression de sa vitesse sur le
plan horizontal en fonction, entre autres, de v0.

Correction

Lorsque x = 0 :

t =

√
2R

g
⇒ y = −R

√
2 < −R

Dans le cas limite, la bille tombe au-delà du point F . Donc même si k > k0, la bille tombera toujours sur la piste.

Puisque la bille conserve sa vitesse horizontale, v = −
√

gR après atterrissage.

V) Masse ressort avec frottements solides

On considère une masse m, supposée ponctuelle au point M, située à l’extrémité d’un ressort de raideur k et de longueur à
vide ℓ0. L’autre extrémité est fixe. On note O l’origine du repère, situé à une distance ℓ0 de l’extrémité fixe.

Le point M est soumis, en plus de la force de rappel élastique, à une force de frottement solide de coefficient fd = fs = f .

On introduit le paramètre xe =
fmg

k
. On suppose que M est abandonné sans vitesse initiale à l’abscisse x0 vérifiant x0 > xe.

20) Montrer que si x ∈ [−xe, xe] et ẋ = 0, alors M reste immobile. Pour démontrer ce résultat, on distinguera les cas x > 0
et x < 0.

Correction

On étudie le système M assimilé à un point matériel dans le référentiel du laboratoire supposé galiléen. On suppose que
x > 0. Dans ce référentiel, le système est soumis à :

◦ Son poids :
−→
P = −mg−→uy

◦ La force de rappel élastique :
−→
F = −k (ℓ− ℓ0)

−→ux = −kx−→ux

◦ La réaction normale :
−→
N = N−→uy

◦ La réaction tangentielle (hypothèse de non glissement) :
−→
T = T−→ux avec T ≤ fN

On suppose que M reste immobile. Le PFD donne : 0 = −kx+ T

0 = −mg +N
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V MASSE RESSORT AVEC FROTTEMENTS SOLIDES

Cette hypothèse de non glissement reste vraie tant que :

T ≤ fN ⇒ kx ≤ mg ⇒ x < xe

Le même raisonnement en supposant que x < 0 donne : 0 = −kx− T

0 = −mg +N
⇒ −kx ≤ mg ⇒ x > −xe

On en déduit que si M est immobile dans la plage [−xe, xe], alors il restera immobile.

Ainsi, si au cours du mouvement ces conditions sont remplies, alors le mouvement s’arrête. L’intervalle [−xe, xe] s’appelle la
plage de stabilité de l’oscillateur.

21) Établir l’équation différentielle vérifiée par M lors de la première phase du mouvement, celle où M glisse vers les x
décroissants.

Correction

On étudie le système M assimilé à un point matériel dans le référentiel du laboratoire supposé galiléen. Dans ce référentiel,
le système est soumis à :

◦ Son poids :
−→
P = −mg−→uy

◦ La force de rappel élastique :
−→
F = −k (ℓ− ℓ0)

−→ux = −kx−→ux

◦ La réaction normale :
−→
N = N−→uy

◦ La réaction tangentielle (s’oppose au glissement qui a lieu selon −−→ux) :
−→
T = T−→ux = fN−→ux

Le PFD donne :  mẍ = −kx+ fN

0 = −mg +N
⇒ mẍ = −kx+ fmg

On en déduit :

ẍ+ ω2
0 x(t) = fg avec : ω0 =

√
k

m

22) Déterminer la solution complète de cette équation différentielle.

Correction

Solution :
x(t) = A cos(ω0t) +B sin(ω0t)︸ ︷︷ ︸

SEH

+ xe︸︷︷︸
SP

Avec les conditions initiales : 
x(0+) = x0 = A+ xe ⇒ A = x0 − xe > 0

ẋ(0+) = 0 = ω0B ⇒ B = 0

On en déduit :
x(t) = (x0 − xe) cos(ω0t) + xe

23) Déterminer l’expression de x1, la position où la vitesse s’annule.

Correction

La vitesse s’annule lorsque x est minimal, c’est-à-dire lorsque le coinus vaut −1.

x1 = x

(
T0

2

)
= −x0 + 2xe

On suppose que x1 n’est pas dans la plage de stabilité.

24) Établir l’équation différentielle vérifiée par M lors de la deuxième phase du mouvement, celle où M glisse vers les x
croissants.
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V MASSE RESSORT AVEC FROTTEMENTS SOLIDES

Correction

On étudie le système M assimilé à un point matériel dans le référentiel du laboratoire supposé galiléen. Dans ce référentiel,
le système est soumis à :

◦ Son poids :
−→
P = −mg−→uy

◦ La force de rappel élastique :
−→
F = −k (ℓ− ℓ0)

−→ux = −kx−→ux

◦ La réaction normale :
−→
N = N−→uy

◦ La réaction tangentielle (s’oppose au glissement qui a lieu selon −−→ux) :
−→
T = −T−→ux = −fN−→ux

Le PFD donne :  mẍ = −kx− fN

0 = −mg +N
⇒ mẍ = −kx− fmg

On en déduit :

ẍ+ ω2
0 x(t) = −fg avec : ω0 =

√
k

m

25) Déterminer la solution complète de cette équation différentielle puis déterminer l’expression de x2, la position où la
vitesse s’annule.

Correction

On redéfinit l’origine des temps. On appelle t = 0 le temps où x = x1.

Solution :
x(t) = A cos(ω0t) +B sin(ω0t)︸ ︷︷ ︸

SEH

−xe︸︷︷︸
SP

Avec les conditions initiales : 
x(0+) = x1 = A− xe ⇒ A = x1 + xe = −x0 + 3xe

ẋ(0+) = 0 = ω0B ⇒ B = 0

On en déduit :
x(t) = (−x0 + 3xe) cos(ω0t)− xe

La vitesse s’annule lorsque x est maximal, c’est-à-dire lorsque le coinus vaut −1.

x2 = x

(
T0

2

)
= x0 − 4xe

On peut généraliser aisément les résultats précédents et montrer que :

xn =

 x0 − 2nxe si n entier naturel pair

−x0 + 2nxe si n entier naturel impair
⇔ xn = (−1)n

(
x0 − 2nxe

)

26) Tracer l’allure de x(t) et commenter les différences entre une force de frottement fluide (dans le cas d’un régime pseudo-
périodique) et de frottement solide.

Correction
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V MASSE RESSORT AVEC FROTTEMENTS SOLIDES

Alors que l’enveloppe du mouvement est exponentielle dans le cas du frottement fluide, on constate ici que l’enveloppe est
affine
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